Drugs and Breastfeeding: An update!

Judith Kristensen
Department of Pharmacy
Women’s and Children’s Health Service
Subiaco

Transfer of drugs into milk
- Depends mostly on amount in mother’s blood - controlled by dose and her metabolism
- Infant intake in first few months is 150ml/kg/day
- Infant exposure from milk is 10-80 times lower than that when drug is taken during pregnancy

Pathways for drug transport into milk

Passage of drug to infant

Clearance in the infant

Calculation of absolute infant dose
- Absolute dose
 - Drug concentration in milk x volume of milk ingested
- Absolute dose has units of mg/kg/day
- Interpret by comparing with paediatric doses where the drug has a legitimate use in infants or children

<table>
<thead>
<tr>
<th>Post-conceptual age</th>
<th>Estimated clearance (as % of maternal clearance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-28</td>
<td>5</td>
</tr>
<tr>
<td>28-34</td>
<td>10</td>
</tr>
<tr>
<td>34-40</td>
<td>33</td>
</tr>
<tr>
<td>40-44</td>
<td>50</td>
</tr>
<tr>
<td>44-68</td>
<td>66</td>
</tr>
<tr>
<td>> 68</td>
<td>100</td>
</tr>
</tbody>
</table>
Calculation of relative infant dose

- Simply a comparison with the maternal dose
- Relative infant dose = \[\frac{\text{absolute infant dose (mg/kg/day)}}{\text{mother's dose (mg/kg/day)}} \]
- Expressed as a percentage
- We use our knowledge of infant clearance to set a SAFE dose level for the infant: < 10% is usual very conservative criterion

Transdermal nicotine patch therapy during lactation

JH Kristensen, KF Ilett, M Page-Sharp, LP Hackett, RK Kohan, TW Hale, PYapp.

Departments of Pharmacy and Neonatal Services, Women's and Children's Health Service, Subiaco, Western Australia. Pharmacology Unit, School of Medicine and Pharmacology, University of Western Australia, Crawley. Clinical Pharmacology and Toxicology Laboratory, Western Australian Centre for Pathology and Medical Research, Nedlands, Western Australia. Department of Pediatrics, Texas Tech University School of Medicine, Amarillo, Texas.

email: judith.kristensen@health.wa.gov.au

Demographics

<table>
<thead>
<tr>
<th>Mothers (n=15)</th>
<th>Infants (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)*</td>
<td>32 (21-34)</td>
</tr>
<tr>
<td>Weight (kg)*</td>
<td>72 (40-102)</td>
</tr>
<tr>
<td>Cigarettes†</td>
<td>17 (6-39)</td>
</tr>
<tr>
<td>Years smoked†</td>
<td>15.3 (13-17.6)</td>
</tr>
<tr>
<td>Gest. Age (w)*</td>
<td>38.4 (37-41)</td>
</tr>
<tr>
<td>Birth weight (kg)*</td>
<td>3.4 (2.6-4.1)</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>8:7</td>
</tr>
<tr>
<td>Age at recruitment (m)*</td>
<td>4.8 (2.5-21)</td>
</tr>
<tr>
<td>Fagerström tolerance questionnaire score.†</td>
<td>6.2 (3.7-8.7)</td>
</tr>
</tbody>
</table>

Results

- Average concentrations over 24hr of nicotine (mg/L) and cotinine (mg/L) in milk from 15 subjects whilst smoking and when at steady state on the nicotine patch at 21mg, 14mg and 7mg doses. Data are means ± 95%CI
- ANOVA *P<0.05

Smoking	7.7 (5.3-10.1)
21mg patch	8.0 (5.9-10.1)*
14mg patch	7.6 (4.9-10.1)*
7mg patch	7.5 (4.9-10.1)*

Plasma cotinine concentration (mean & 95% CI)

- Infants 22 µg/L (19-25)
- Mothers 175 µg/L (136-214)

Infant well being

- Denver developmental ratio
- All had achieved expected age related weight gain

Calculated absolute and relative infant doses (mean & 95% CI)

<table>
<thead>
<tr>
<th>Maternal dose</th>
<th>Absolute Infant dose (mg/kg/day)</th>
<th>Relative Infant dose %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>25.2 (17.0-33.4)</td>
<td>†</td>
</tr>
<tr>
<td>21mg patch</td>
<td>23.0 (13.8-32.2)</td>
<td>7.6 (4.9-10.3)</td>
</tr>
<tr>
<td>14 mg patch</td>
<td>15.8 (11.4-20.2)*</td>
<td>8.0 (5.9-10.1)</td>
</tr>
<tr>
<td>7 mg patch</td>
<td>7.5 (4.9-10.1)*</td>
<td>7.7 (3.3-10.1)</td>
</tr>
</tbody>
</table>

*p < 0.05 compared to smoking
† Not calculated as dose from cigarettes not quantified
Use of nicotine patches in a breast feeding mother as an aid to “quit” smoking is safer than continued maternal smoking because:

- As the mother progresses to lower patch strengths, the transfer of nicotine equivalents to breast milk is significantly decreased. Compared with smoking, the absolute infant dose decreased by about 70% at the 7mg patch level.
- The infant is not exposed to environmental contamination, or to toxic, cigarette derived, xenobiotics via breast milk.
- Use of the nicotine patch has no significant influence on the milk intake of the breast fed infant.

Transfer of metformin into human milk

T. W. Hale1, J. H. Kristensen2, L. P. Hackett3, R. Kohan4, K. F. Ilett5,3

1 Department of Pediatrics, Division of Clinical Pharmacology, Texas Tech University School of Medicine, Amarillo, Texas, USA; 2 Department of Pharmacy, King Edward Memorial & Princess Margaret Hospitals, Subiaco, Western Australia; 3 Clinical Pharmacology & Toxicology Laboratory, The Western Australian Centre for Pathology & Medical Research, Subiaco, Western Australia; 4 Department of Neonatal Services, King Edward Memorial Hospital, Subiaco, Western Australia; 5 Department of Pharmacology, University of Western Australia, Crawley, Western Australia.

Diabetologia 2002; 45:1509-1514

Background

- Diabetes - (mostly type II, NIDDM) affects around 6% of the population and in the last decade there has been a 30% increase in younger individuals
- Metformin - oral antidiabetic agent – first line Rx for NIDDM. Also has beneficial effects in polycystic ovary syndrome (PCOS). No data on transfer of metformin into milk.
- Metformin – small highly water soluble molecule, oral availability 50-60% half-life 4-5 hours

Results

Maternal data:

Mean age 34y (range 26-38 y) and mean body weight 97 kg (range 73-116 kg)

Six women took 500 mg of metformin orally, thrice daily before meals, while one (#6) took 500 mg of a slow release metformin formulation once daily

Median daily metformin dose was 14 mg kg⁻¹ day⁻¹ (range 6.9-20 mg kg⁻¹ day⁻¹)

Five being treated for PCOS, and two for NIDDM

Diabetologia 2002; 45:1509-1514
Results

Infant data:
- 4 M and 4 F with a mean age of 14.3 months (range 5-25 months) and a mean body weight of 10.8 kg (range 6.5-15 kg)
- All infants progressing well according to mother/paediatrician reports (no data available for patient #3).
Detailed Denver Development assessments in infants of patients # 1 & 2 were normal

Conclusions

- Mean M/P of 0.35 is quite low, but in keeping with high water solubility of metformin
- Mean relative infant dose of 0.28% is well below the 10% level of concern
- Absence of any adverse effect in the infants is also reassuring, although our data on this area are sparse and somewhat subjective
- Women who need to take metformin for control of NIDDM or PCOS should be encouraged to breastfeed their infants

Milk:plasma ratio

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Milk (mg l⁻¹)</th>
<th>Plasma (mg l⁻¹)</th>
<th>M/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.30</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>2</td>
<td>0.26</td>
<td>0.52</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>0.39</td>
<td>1.07</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>0.24</td>
<td>0.76</td>
<td>0.32</td>
</tr>
<tr>
<td>4</td>
<td>0.15</td>
<td>0.96</td>
<td>0.16</td>
</tr>
<tr>
<td>4</td>
<td>0.07</td>
<td>0.52</td>
<td>0.13</td>
</tr>
<tr>
<td>7</td>
<td>0.43</td>
<td>1.15</td>
<td>0.37</td>
</tr>
<tr>
<td>Mean</td>
<td>0.27</td>
<td>0.79</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Infant dose & plasma levels

<table>
<thead>
<tr>
<th>Infant of patient #</th>
<th>Absolute dose (mg kg⁻¹ day⁻¹)</th>
<th>Relative dose (%)</th>
<th>Plasma metformin (mg l⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.045</td>
<td>0.23</td>
<td>0.08</td>
</tr>
<tr>
<td>2</td>
<td>0.039</td>
<td>0.29</td>
<td>0.05*</td>
</tr>
<tr>
<td>3</td>
<td>0.059</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0.036</td>
<td>0.24</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0.023</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>0.011</td>
<td>0.50</td>
<td>< 0.01</td>
</tr>
<tr>
<td>7</td>
<td>0.064</td>
<td>0.15</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Mean</td>
<td>0.04</td>
<td>0.28</td>
<td>-</td>
</tr>
</tbody>
</table>

*mean for twins

Escitalopram (Lexapro)

Maternal dose 10mg
Relative infant dose 5.74%
M:P escitalopram 1.72
M:P desmethylcitalopram 2.41
Escitalopram
- Subjects to date: 4
- Maternal dose: 213mcg/kg
- M:P escitalopram: 2
- M:P desmethylcitalopram: 2.3
- RID escitalopram eqivs: 6.38%

Mirtazapine (Avanza)
- Maternal dose: 45mg
- Relative infant dose: 1.1%
- Infant plasma <1.5μL

Mirtazapine
- Subjects to date: 5
- Maternal dose: 30-120mg/day
- RID mirtazapine: 1.41 (0.57 - 2.5)%
- RID desmethylmirtazapine: 0.42 (0.13 - 0.7)%

Reboxetine (Edronax)
- Maternal dose: 4mg/day
- RID: 2.3%
- M:P <0.1
- Infant serum <4mg/L
- 2.83h post maternal dose

Olanzapine (Zyprexa)
- Maternal dose: 136mcg/kg
- M:P (AUC): 0.32
- RID: 0.93%
- 6 mother/infant pairs
- M:P (AUC): 0.38
- RID: 1.02%
- Not detected in infant plasma
- All infants healthy, no adverse effects

Risperidone
- 2 papers in literature
 - single case study (Hill et al)
 - M:P <0.42, 0.24 risperidone, 9-OH risperidone
 - RID: 4.3%
 - 3 cases (Ilett et al) Am Pharmacother 2004;38:273-6
 - M:P <0.5 risperidone, 9-OH risperidone
 - RID 2.3%, 2.8%, 4.7%
 - Not detected in plasma of infants
 - No adverse infant effects noted
Dexamphetamine

- Used to treat Attention Deficit Hyperactivity Disorder (ADHD)
- Some patients now of reproductive age
- Safety of breastfeeding not established rigorously
 - insufficient information on relative infant doses and safety
 - use of psychoactive drugs in babies usually considered undesirable

Maternal dose (mg/kg)
- 0.26
M/P
- 1.96
Relative infant dose
- 3.8%
Infant plasma (mg/L)
- 1.7
Infant age (months)
- 5
No adverse effects on infant assessment

Dexamphetamine

Maternal dose (mg/kg)
- 0.64
M/P
- 2.7
Relative infant dose
- 7.3%
Infant plasma (mg/L)
- 18
Infant age (months)
- 3
No adverse effects noted on infant assessment

Methylamphetamine

Mother: 29y, 64 kg
Infant: 4m, 6 kg
Absolute infant dose (μg/kg/day): 17
Methylamphetamine in milk: not detected; LOD 20 μg/L

Mother: 27y, 68 kg
Infant: 4m, 3.5kg
Methylamphetamine Absolute infant dose (μg/kg/day): 68
Methylamphetamine in milk: LOD 20 μg/L

Conclusions for ADHD drugs
- Use of drugs for ADHD in pregnancy and lactation should be undertaken on a case basis with due consideration of the risks and benefits to mother and infant
- For any drug, exposure of the foetus in pregnancy is very much larger than that of the newborn to drug in milk
Pseudoephedrine

Study design:
- Single blind, randomised cross over of a single dose of pseudoephedrine HCl (960mg) versus placebo in 8 lactating women
- Assessed
 - Change in prolactin levels
 - Breast blood flow
 - Milk production
 - Infant exposure

Pseudoephedrine - results
- Milk production decreased by 24% after 60mg dose
 - Placebo: 784 ± 288mL/day
 - Pseudoephedrine: 623 ± 330mL/day
- Serum prolactin post-feed surge decreased by 13.5%
- Pseudoephedrine did not alter flow in the internal mammary and/or lateral thoracic arteries

Pseudoephedrine - results

Domperidone

Historically
- 5 human studies
 - 30mg daily (10mg tds)
 - Milk volume increased 44-300%
 - Prolactin increased 100-400%
- Current study
 - Measures the effectiveness of 30mg daily and 60mg daily doses of domperidone
 - Assesses risk to infant
 - 5 completed study (4 preterm, 1 fullterm)

Domperidone - results
- 3 responders
 - 300-600% increase in milk production
 - 500-2000% increase in serum prolactin
- 2 non responders
 - 20-116% increase in milk production
 - 150-3000% increase in serum prolactin
- Side effects > with 60mg dose

Domperidone-prolactin
- Increase in serum prolactin
Domperidone

- Effective galactogogue 60mg >30mg/day
- Minimal adverse effects
 - dry mouth, headache, abdominal cramps
- Absolute infant dose
 - 30mg/day dose 0.07 µg/kg/day
 - 60mg/day dose 0.12 µg/kg/day
- Infant dose (clinical) 0.2-0.4mg/kg/dose 4-8 hourly
- Relative infant dose 0.01-0.02%

Tramadol

- Ongoing single point study
- Relative infant dose approx 3%